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Let us examine the processes of heat and electricity transport in alloy
mixtures, An analytical method is proposed for the determination of
the effective thermal and electrical conductivities of such alloys,
depending on the coefficients of thermal and electrical conductivity
of the components, their volume concentration, and the structure of
the alloy,

A substantial number of theoretical and experimental
investigations—which are reviewed in [1, 2]—has been

Fig. 1. Diagrams of state for the alloys under
study: a) components are virtually insoluble;
b) components are partially soluble.

devoted to the processes of heat and electricity trans-
fer in alloys. That review also notes the absence of a
complete theory of transport in alloys, thus making it
possible to determine the coefficients of thermal and
electrical conductivity for alloys with the required
degree of accuracy. From among the many binary
alloys, we can isolate three basic groups:

1) alloys with unlimited solubility of the components
(solid solutions);

2) alloys with limited solubility of the components
(solid solutions with a eutectic);

3) alloys with virtually insoluble components (eutec-
tic alloys, alloy mixtures).

Let us consider this last group of alloys which, in
the solid state, are nonhomogeneous, representing a
mixture of two insoluble components. The diagram of
state shown in Fig. la corresponds to such alloys. We
know that for a concentration of components A and B
corresponding to the point b of the diagram of state a
eutectic alloy is formed, i.e., a mechanical mixture
of uniformly distributed components A and B. With
concentrations greater than g, the solid alloy is com-
posed of two structural components: of the crystals of
the pure component B and of the eutectic mixture (in
the case of a eutectic alloy). The structure of the pre-
eutectic alloys consists of the crystals of the pure
component A and of the eutectic [3]. Consequently,
over the entire range of variation in the concentration
of the components the alloy under consideration re-
presents a mechanical mixture of two components. In
this case, the distribution of the components is statis-
tically random in nature. Let us make the following

assumption: the effective thermal conductivity of the
statistical mixture is equal to the effective thermal
conductivity of the ordered structure, if the values of
the thermal conductivities of the components and of
their concentrations are identical for the statistical
and ordered structures. (All of these comments are
equally valid for electrical conductivity.) We will re-
turn to the justification of this assumption later on.

It is possible to consider the various classes of the
alloy-mixture structures as follows: a) isolated in-
clusions (granules) of component B (Fig. 2a) have
penetrated into the binder component A; b) the com~
ponents A and B form an interpenetrating macrolattice
(Fig. 2b); c) the components form combined structures
of interpenetrating macrolattices and isolated in-
clusions (Fig. 2¢).

All of the above-enumerated structural types are
unordered statistical mixtures in which the study of
the heat and electricity transport is associated with
considerable difficulties. Based on the above assump-
tions, we will represent the unordered statistical mix-
ture in the form of an ordered structure, retaining the
concentration and characteristics of the components.
For any ordered structure, the existence of long-range
order is characteristic in the distribution of the com-
ponents. This makes it possible to isolate the "ele-
mentary cell" from the entire structure (see Fig. 3)—
the minimum volume element whose effective thermal
conductivity is equal to the thermal conductivity of

Fig. 2. Structures of alloy-mixtures: a) with isolated
inclusions; b)with interpiercing inclusions; ¢) combined.

the entire structure, and so we continue the study of

transport processes only in the elementary cell [4, 5].
Since the end of the last century, many researchers

have studied the processes of transport in structures
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Fig., 3. Form of elementary cell and line of heat flux: a)struc-

ture with insulated inclusions; b) structure with interpiercing in-

clusions; ¢) current lines in cell; d) schematic presentation of
current lines; €) connection diagram of thermal resistors.
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Fig. 4. Relationship between thermal conductivity and electric conductivity of bi-
nary alloys-mixtures with volume concentration of components, %: a) alloys with
small difference in component characteristics [8] (I, Pb-Sb; 11, Pb-Sn); b) alloyé with
high difference in component characteristics (I, Cd-Bi; 1, t = 50°C; 2, t = 100°C [1]
3, t = B0°C [8); 1I, Bi-Cd; 1, t = 50°C; 2, t = 100°C [1]; 1L, Bi-Ag; 4, t = 30°C [9]).
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with isolated inclusions, their relation to the shape of the
inclusions, the nature of the distribution within the
binder component, the volume concentration of the
inclusions, and the thermal conductivity of the com-
ponents. The basic conclusions of this research are
presented in [5, 6,12]. In our opinion, Odelevskii [4]
achieved the most correct derivation of the functional
relationship associating the effective characteristics
and the determining parameters of a structure with
isolated inclusions, i.e., he proposed the following
relationship:

m

( 1-1~m)]’”=%?4”

1 —w 3

A=M[1—

The subscripts for the components in formula (1) can~
not be interchanged, since in the light of the geometric
disparity between the components; this might lead to
substantial distortion of the calculation results [4].

In the derivation of relationship (1) it was assumed
that cubic inclusions are oriented with respect to one
of the faces, perpendicular to the heat flow. Analysis
of the investigational results demonstrates that the
divergence in the shape of the nonelongated inclusions
(sphere, cube, twinned pyramid, nonoriented ellipsoids
of revolution) and their orientation with respect to the
direction of the heat flow have virtually no effect on
the magnitude of the effective thermal conductivity of
the system with isolated inclusions [7]. The transfer.
of heat in structures with interpenetrating components
has been studied in [5] in which the following expres-
sion has been proposed for the determination of the
effective thermal conductivity:

L=y [02_}_\7(1_6)2_{_:2;\3:}0‘_((11_:%))_}’ (2)

where ¢ is the geometric parameter of the lattice (see
Fig. 3b), accociated with the volume concentration m
of the second component by the equation

m=2®—3c+1, (3)

whose solution has the form

c=0.5+acos-% (4)
when
0<m<05 a=—1; @=arccos(l —2m),
05<m«1.0; a=1; ¢=arccos(2m— 1),
where
270° < ¢ < 360°.

In the structure with interpenetrating components,
the subscripts of the components may be chosen arbi-
trarily, since in the light of the geometric similarity
between the components, the substitution of the sub-
scripts will not affect the resuits of the calculation.

To determine the boundaries of applicability for
formulas (1) and (2), let us consider the assumptions
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and limitations which were employed in the determina~
tion of these relationships.

In references [4, 5] it was assumed that infinitely
thin adiabatic interlayers have been introduced into
the elementary cell (Fig. 3a,b) at the boundaries be-
tween heterogeneous bodies parallel to the heat flow.
The introduction of these interlayers causes the stream-
lines of the heat flow within the elementary cell to be-
come parallel, thus making it possible to reduce the
problem under consideration to the simplest one-
dimensional case.' Figure 3c shows the heat-flow
streamlines in the elementary cell (Fig. 3a) of a struc-
ture with isolated inclusions (for the special case of
A > Ap) without these adiabatic interlayers, while Fig.
3d shows the same situation in the presence of such
adiabatic interlayers. Further, the elementary cell is
divided into several parts with thermal resistances
Rj, Ry, and R3, which were calculated on the basis of
the simple formulas for flat walls. The total thermal
resistance of the elementary cell was found from the
circuit shown in Fig. 3e. The elementary cell was
then presented in the form of a homogeneous body
with an effective thermal conductivity A, and whose
thermal resistance was also determined on the basis
of the formula for a flat wall. Equating both expres-
sions for the thermal resistance of the elementary
cell, and expressing the geometric parameters in
terms of the concentration, we derive the analytical
expression (1). This same approach was also adopted
for the elementary cell (Fig. 3b) of a system with
interpenetrating components.

It was demonstrated in [5] that the assumption of
parallel heat-flow streamlines has but a slight effect
on the final result, i.e., we can assume the hypothesis
to be valid.

The following constraint has been introduced im-
plicitly into the mathematical realization of the above
considerations: there are no additional physical or
chemical effects present at the boundaries between
heterogeneous components to alter the flow of heat to
the elementary cell, i.e., the thermal conductivities
of the original components remain unchanged after
they have been brought into contact. This limitation
narrows the range of applicability for relationships
(1) and (2); they are valid for alloys whose structure
is a mechanical mixture.

The nature of the alloy structure can be determined
by studying microscopic sections and the diagram of
state. If the components of the alloy are virtually in-
soluble (see Fig. 1a), the proposed method is suitable
for the determination of the effective thermal conduc~
tivity of the alloy mixture in the region h-k-i-i. In
the case of limited solubility for the components (see
Fig. 1b), the proposed calculation method can be used
in the zone f-d-e-g, i.e., in the region of mixed «

B solid solutions. The original components in this case
are the o and B solid solutions at the corresponding
lines f-d and g-e.

To verify the suitability of the proposed method and
to determine the region of its applicability, we com-
pared the calculation results for the effective thermal
and electrical conductivities of binary alloys with
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virtually insoluble components against experimental
data taken from [1,4, 8, 9] (see Fig. 4).

The satisfactory coincidence of the calculation re~
sults and those of the experiment attest to the possi-
bility of presenting a statistical mixture in the form
of an ordered structure in the determination of the
effective coefficient of mixture transport, i.e., the
assumption may be regarded as having been validated
experimentally. We note that despite the extensive
publication, by various authors, of the experimental
data obtained in the study of the thermal and elec-
trical conductivities of alloys, only a few of these
present results for a wide range of variation in com-
ponent concentration. This explains the comparatively
small volume of experimental data which we have pre-
sented to justify the proposed method of calculating
the transport coefficients for the alloy mixtures. The
validity of these assumptions is indirectly confirmed
by the agreement between the calculation results and
the experimental data with respect to the thermal con-
ductivity of statistical mixtures not related to alloys
[7,11]. We felt it necessary to dwell in such detail
on precisely this assumption, since the remaining
assumptions have either been validated analytically
or have been dropped through the introduction of limita-
tions on the proposed method of calculating the effec-
tive transport coefficients.

Extensive use is made in the physics of metals of
the rule relating the properties of alloys with the
properties of the components and their concentrations,
this rule known as the Kurnakov law. According to the
Kurnakov law, the principle of additivity applies to
alloy mixtures, i.e., a linear relationship between
the properties of the alloy and the concentration of
the components

b=+ A (1 —m). (5)

It is not difficult to demonstrate that relationship
(5) is special in nature and applicable in the limited
range of application for the parameter v. Indeed, for
0.7 = v = 1.0 relationships (1) and (2) are close to
the linear (see Fig. 4a) and virtually coincide with
relationship (5) over the entire range of variation in
concentration. However, application of the Kurnakov
law for the determination of the alloy-mixture prop-
erties in the region of low values for the parameter
(v < 0.5) leads to substantial error.

In formulas (1) and (2), for the determination of
the effective thermal conductivity the concentration
is expressed in volume percent, whereas in the ma-
jority of cases it is the weight concentration of the
components that is known for alloys. The relationship
between the volume and weight concentrations of the
component is specified by the expression

M= p=P2. (6)
n+n(l+mn) 0
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In conclusion, let us examine the practical scheme
of calculating the effective thermal and electrical con~
ductivities of the alloy mixtures. First of all, we have
to use the diagram of state to prove that the given
alloy is a mechanical mixture. Further analysis of
the microscopic sections enables us to determine the
structure of the alloy (isolated inclusions, interpene-
trating components, or a combination of these) and to
select the calculational formula (1) or (2). The method
of calculating the effective thermal and electrical con-
ductivities for alloys of combined structure for any
number of ingoluble components—said method involving
the use of relationships (1) and (2)~—has been covered
in detail in reference [10].

If we do not know the nature of the alloy's struc-
ture, for tentative calculations we can take the arith-
metic mean of that value from formulas (1) and (2).

NOTATION

A istheeffective thermal conductivity of the mixture;
A, and Ay are the thermal-conductivity coefficients of
the binders and inclusions, respectively; m is the
volume concentration of inclusions; n is the weight
concentration of components; pj is the specific density
of components.
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